[經典]高考數學知識點總結15篇
總結是事后對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規律性的結論,它在我們的學習、工作中起到呈上啟下的作用,讓我們好好寫一份總結吧。那么總結要注意有什么內容呢?以下是小編幫大家整理的高考數學知識點總結,僅供參考,歡迎大家閱讀。
高考數學知識點總結1
圓與圓的位置關系的判斷方法
一、設兩個圓的半徑為R和r,圓心距為d。
則有以下五種關系:
1、d>R+r兩圓外離;兩圓的圓心距離之和大于兩圓的'半徑之和。
2、d=R+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。
3、d=R—r兩圓內切;兩圓的圓心距離之和等于兩圓的半徑之差。
4、d 5、d 二、圓和圓的位置關系,還可用有無公共點來判斷: 1、無公共點,一圓在另一圓之外叫外離,在之內叫內含。 2、有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切。 3、有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。 1.集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡易邏輯、充要條件 2.函數:映射與函數、函數解析式與定義域、值域與值、反函數、三大性質、函數圖象、指數函數、對數函數、函數的應用 3.數列:數列的有關概念、等差數列、等比數列、數列求通項、求和 4.三角函數:有關概念、同角關系與誘導公式、和差倍半公式、求值、化簡、證明、三角函數的圖像及其性質、應用 5.平面向量:初等運算、坐標運算、數量積及其應用 6.不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經常出現在大題的選做題里)、不等式的應用 7.直線與圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系 8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用 9.直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量 10.排列、組合和概率:排列、組合應用題、二項式定理及其應用 11.概率與統計:概率、分布列、期望、方差、抽樣、正態分布 12.導數:導數的概念、求導、導數的應用 13.復數:復數的概念與運算 圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標 圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0 拋物線標準方程y2=2pxy2=-2p__2=2pyx2=-2py 直棱柱側面積S=c__h斜棱柱側面積S=c'__h 正棱錐側面積S=1/2c__h'正棱臺側面積S=1/2(c+c')h' 圓臺側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi__r2 圓柱側面積S=c__h=2pi__h圓錐側面積S=1/2__c__l=pi__r__l 弧長公式l=a__ra是圓心角的弧度數r>0扇形面積公式s=1/2__l__r 錐體體積公式V=1/3__S__H圓錐體體積公式V=1/3__pi__r2h 斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側棱長 柱體體積公式V=s__h圓柱體V=pi__r2h 等差數列的基本性質 公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d. 公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd. 若{an}{bn}為等差數列,則{an±bn}與{kan+bn}(k、b為非零常數)也是等差數列. 對任何m、n,在等差數列中有:an=am+(n-m)d(m、n∈N+),特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性. 一般地,當m+n=p+q(m,n,p,q∈N+)時,am+an=ap+aq. 公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差). 下表成等差數列且公差為m的項ak.ak+m.ak+2m.....(k,m∈N+)組成公差為md的等差數列。 在等差數列中,從第二項起,每一項(有窮數列末項除外)都是它前后兩項的等差中項. 當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等于一個常數. 一次函數的定義 一次函數,也作線性函數,在x,y坐標軸中可以用一條直線表示,當一次函數中的一個變量的值確定時,可以用一元一次方程確定另一個變量的值。 函數的表示方法 列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規律。 解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。 圖象法:形象直觀,但只能近似地表達兩個變量之間的函數關系。 一次函數的性質 一般地,形如y=kx+b(k,b是常數,且k≠0),那么y叫做x的一次函數,當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數 注:一次函數一般形式y=kx+b(k不為0) a)k不為0 b)x的指數是1 c)b取任意實數 一次函數y=kx+b的圖像是經過(0,b)和(-b/k,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看做直線y=kx平移|b|個單位長度得到。(當b>0時,向上平移;b<0時,向下平移) 空間幾何體的三視圖 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下) 注: 正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度; 俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度; 側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。 高中數學的復習方法 一、分類記憶法 遇到數學公式較多,一時難于記憶時,可以將這些公式適當分組。例如求導公式有18個,就可以分成四組來記:(1)常數與冪函數的導數(2個);(2)指數與對數函數的導數(4個);(3)三角函數的導數(6個);(4)反三角函數的導數(6個)。求導法則有7個,可分為兩組來記:(1)和、差、積、商復合函數的導數(4個);(2)反函數、隱函數、冪指數函數的導數(3個)。 二、推理記憶法 許多數學知識之間邏輯關系比較明顯,要記住這些知識,只需記憶一個,而其余可利用推理得到,這種記憶稱為推理記憶。例如,平行四邊形的性質,我們只要記住它的定義,由定義推理得它的任一對角線把它平分成兩個全等三角形,繼而又推得它的對邊相等,對角相等,相鄰角互補,兩條對角線互相平分等性質。 三、標志記憶法 在學習某一章節知識時,先看一遍,對于重要部分用彩筆在下面畫上波浪線,再記憶時,就不需要將整個章節的內容從頭到尾逐字逐句的`看了,只要看劃重點的地方并在它的啟示下就能記住本章節主要內容,這種記憶稱為標志記憶。 四、回想記憶法 在重復記憶某一章節的知識時,不看具體內容,而是通過大腦回想達到重復記憶的目的,這種記憶稱為回想記憶。在實際記憶時,回想記憶法與標志記憶法是配合使用的。 高中數學的做作業的注意事項 1、先看書后作業,看書和作業相結合。只有先弄懂課本的基本原理和法則,才能順利地完成作業,減少作業中的錯誤,也可以達到鞏固知識的目的。 2、注意審題。要搞清題目中所給予的條件,明確題目的要求,應用所學的知識,找到解決問題的途徑和方法。 3、態度要認真,推理要嚴謹,養成“言必有據”的習慣。準確運用所學過的定律、定理、公式、概念等。作業之后,認真檢查驗算,避免不應有的錯誤發生。 4、作業要獨立完成。只有經過自己動腦思考動手操作,才能促進自己對知識的消化和理解,才能培養鍛煉自己的思維能力;同時也能檢驗自己掌握的知識是否準確,從而克服學習上的薄弱環節,逐步形成扎實的基礎。 5、認真更正錯誤。作業經老師批改后,要仔細看一遍,對于作業中出現的錯誤,要認真改正。要懂得,出錯的地方,正是暴露自己的知識和能力弱點的地方。經過更正,就可以及時彌補自己知識上的缺陷。 6、作業要規范。解題時不要輕易落筆,要在深思熟慮后一次寫成,切忌寫了又改,改了又擦,使作業涂改過多。書寫要工整,解題步驟既要簡明、有條理,又要完整無缺。作業時,各科都有各自的格式,要按照各學科的作業規范去做。 7、作業要保存好,定期將作業分門別類進行整理,復習時,可隨時拿來參考。 高中數學的上課建議 1、課前準備好上課所需的課本、筆記本和其他文具,并抓緊時間簡要回憶和復習上節課所學的內容。 2、要帶著強烈的求知欲上課,希望在課上能向老師學到新知識,解決新問題。 3、上課時要集中精力聽講,上課鈴一響,就應立即進入積極的學習狀態,有意識地排除分散注意力的各種因素。 4、聽課要抬頭,眼睛盯著老師的一舉一動,專心致志聆聽老師的每一句話。要緊緊抓住老師的思路,注意老師敘述問題的邏輯性,問題是怎樣提出來的,以及分析問題和解決問題的方法步驟。 5、如果遇到某一個問題或某個問題的一個環節沒有聽懂,不要在課堂上“鉆牛角尖”,而要先記下來,接著往下聽。不懂的問題課后再去鉆研或向老師請教。 6、要努力當課堂的主人。要認真思考老師提出的每一個問題,認真觀察老師的每一個演示實驗,大膽舉手發表自己的看法,積極參加課堂討論。 7、要特別注意老師講課的開頭和結尾。老師的“開場白”往往是概括上節內容,引出本節的新課題,并提出本節課的目的要求和要講述的中心問題,起著承上起下的作用。老師的課后總結,往往是一節課的精要提煉和復習提示,是本節課的高度概括和總結。 8、要養成記筆記的好習慣。好是一邊聽一邊記,當聽與記發生矛盾時,要以聽為主,下課后再補上筆記。記筆記要有重點,要把老師板書的知識提綱、補充的課外知識、典型題目的解題步驟和課堂上沒有聽懂的問題記下來,供課后復習時參考。 學好高三數學的方法和技巧 1、建議多做真題,好做一個錯題本; 2、做數學題對答案的時候不僅僅是對答案,更要看自己是怎么錯的。高考之前,理解并且會做一道題目比做對一道題目更有用; 3、假如遇到不會的題目可以和你的授課老師交流,相信老師是愿意幫你的。 4、平時可以多做一些數學的模考試卷,原因是從中能夠學會合理控制時間,并且,能強化做題的思路和做題的速度和準確度(這兩點通過多做試卷會有很好的提升)。 考點一:集合與簡易邏輯 集合部分一般以選擇題出現,屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯結詞、“充要關系”、命題真偽的判斷、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。 考點二:函數與導數 函數是高考的重點內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函數的單調區間、極值與最值等,通常以客觀題的形式出現,屬于容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯系在一起以解答題的形式出現,如一些不等式恒成立問題、參數的取值范圍問題、方程根的個數問題、不等式的證明等問題。 考點三:三角函數與平面向量 一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點考查平面向量數量積的概念及應用,向量與直線、圓錐曲線、數列、不等式、三角函數等結合,解決角度、垂直、共線等問題是“新熱點”題型。 考點四:數列與不等式 不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進行考查。在選擇、填空題中考查等差或等比數列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問題的能力,它們都屬于中、高檔題目。 考點五:立體幾何與空間向量 一是考查空間幾何體的結構特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)。在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。 考點六:解析幾何 一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。 考點七:算法復數推理與證明 高考對算法的.考查以選擇題或填空題的形式出現,或給解答題披層“外衣”。考查的熱點是流程圖的識別與算法語言的閱讀理解。算法與數列知識的網絡交匯命題是考查的主流。復數考查的重點是復數的有關概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大。推理證明部分命題的方向主要會在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數學歸納法可能作為解答題的一小問。 高考數學試卷檢查注意事項 一、填空題 1、所有關于范圍或者解集,最好一律寫區間形式,以免你無暇顧及題目問的到底是范圍還是區間,省事; 2、關于區間的開閉點有空最好驗算下,特別你找不到草稿又擔心自己抄錯; 3、所有角度最好寫成弧度制度,以確保萬一你寫了個0到60度,0上面你有五成以上可能性忘記加個度(°); 4、審題要清,要逐字看清條件和設問。比如,夾角還是夾角余弦值,余子式還是余子式的值,復數到底是寫數還是寫實部還是虛部還是模,傾斜角還是斜率;軌跡還是軌跡方程,直線AC還是平面AC;系數還是二項式系數;最大值還是最小值; 5、做向量運算要注意答案到底是0還是0向量; 6、等差等比數列算公差公比有兩解正負的,注意看有沒有“正數數列,遞增數列”一類的字眼; 7、解析幾何求直線方程,設了斜率要檢驗斜率不存在的情況; 8、寫了解析式和軌跡方程要注意不要忘記定義域;同樣的三角類題型,不要忘記K∈Z,寫了用K的角更要看是不是題目給了范圍 9、解析幾何要看清焦點在什么地方的曲線; 10、數列求通項要看看需不需要分類,a1能不能合并; 11、實系數一元二次方程求系數要注意分虛實,兩種情況; 12、不會的不要糾結,填空要控制在35分鐘; 二、選擇題 1、沒有ABCD各一個的說法,更沒有什么ABCD一定一個沒有一個有兩個的說法,都是騙人的; 2、凡是英語選擇題的技巧,數學不適用,例如三短一長啊,以上都不對必選之類; 3、注意賦值法、排除法在檢查選擇題時的運用; (相關內容可點擊閱讀高考數學選擇填空題十大解題技巧) 4、選擇控制在10分鐘以內; 三、解答題 1、函數判斷奇偶性前要先判斷定義域是否左右對稱,一分哦,R的話也要加一句判斷哦,單調性證明設的時候注意定義域,最值寫的時候沒最小值不要忘記寫無最小值! 2、基本不等式使用一正二定三相等切記切記,負的變號,根據范圍判斷定植是否取得到; 3、復數設的時候注意a,b∈R不要漏; 4、寫定比分點公式切記不要寫成相除模式,向量沒有除法,屬于錯誤表述; 5、解三角形用到sin值求角切記兩解,兩解切記檢驗; 6、解析幾何設了斜率檢驗斜率不存在,中點弦問題最后記得檢驗判別式大于0; 7、應用題注意一定要寫合理的定義域,上下限都要考慮,尤其圖形的應用題,必有上下限; 8、圖像平移記得前面的負號系數要提出再平移; 9、數列大題太難第一問做不出可以猜通項,時間有多加個數學歸納法證明; 10、大題前三題控制在25~30分鐘 高考數學解答題注意事項 一、三角函數題 注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。 二、數列題 1、證明一個數列是等差(等比)數列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列; 2、最后一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證; 3、證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。 三、立體幾何題 1、證明線面位置關系,一般不需要去建系,更簡單; 2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系; 3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關系(符號問題、鈍角、銳角問題)。 四、概率問題 1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數; 2、搞清是什么概率模型,套用哪個公式; 3、記準均值、方差、標準差公式; 4、求概率時,正難則反(根據p1+p2+...+pn=1); 5、注意計數時利用列舉、樹圖等基本方法; 6、注意放回抽樣,不放回抽樣; 7、注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透; 8、注意條件概率公式; 9、注意平均分組、不完全平均分組問題。 五、圓錐曲線問題 1、注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定系數法; 2、注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變量的取值范圍等等; 3、戰術上整體思路要保7分,爭9分,想12分。 六、導數、極值、最值、不等式恒成立(或逆用求參)問題 1、先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能并,用“和”或“,”隔開(知函數求單調區間,不帶等號;知單調性,求參數范圍,帶等號); 2、注意最后一問有應用前面結論的'意識; 3、注意分論討論的思想; 4、不等式問題有構造函數的意識; 5、恒成立問題(分離常數法、利用函數圖像與根的分布法、求函數最值法); 6、整體思路上保4分,爭8分,想12分。 高考數學考試解題注意事項 1.審題與解題的關系 很多人對審題重視不夠,匆匆一看急于下筆,以致題目的條件與要求都沒有吃透,至于如何從題目中挖掘隱含條件、啟發解題思路就更無從談起,這樣解題出錯自然多。只有耐心仔細地審題,準確地把握題目中的關鍵詞與量。如“至少”,“a>0”,自變量的取值范圍等等,從中獲取盡可能多的信息,才能迅速找準解題方向。 2.“會做”與“得分”的關系 要將你的解題策略轉化為得分點,主要靠準確完整的數學語言表述,這一點往往被很多人所忽視,因此卷面上大量出現“會而不對”“對而不全”的情況,自己的估分與實際得分差之甚遠。如立體幾何論證中的“跳步”,使很多人丟失1/3以上得分,代數論證中“以圖代證”,盡管解題思路正確甚至很巧妙,但是由于不善于把“圖形語言”準確地轉譯為“文字語言”,得分少得可憐。 3.快與準的關系 只有“準”才能得分,只有“準”你才可不必考慮再花時間檢查,而“快”是平時訓練的結果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。如去年第21題應用題,此題列出分段函數解析式并不難,但是相當多的人在匆忙中把二次函數甚至一次函數都算錯,盡管后繼部分解題思路正確又花時間去算,也幾乎得不到分,這與我們的實際水平是不相符的。適當地慢一點、準一點,可得多一點分;相反,快一點,錯一片,花了時間還得不到分。 4.難題與容易題的關系 拿到試卷后,應將全卷通覽一遍,一般來說應按先易后難、先簡后繁的順序作答。近年來考題的順序并不完全是難易的順序,因此在答題時要合理安排時間,不要在某個卡住的題上打“持久戰”,那樣既耗費時間又拿不到分,會做的題又被耽誤了。這幾年,數學試題已從“一題把關”轉為“多題把關”,因此解答題都設置了層次分明的“臺階”,入口寬,入手易,但是深入難,解到底難,因此看似容易的題也會有“咬手”的關卡,看似難做的題也有可得分之處。所以考試中看到“容易”題不可掉以輕心,看到難題不要膽怯,冷靜思考、仔細分析,定能得到應有的分數。 三角函數。 注意歸一公式、誘導公式的正確性。 數列題。 1、證明一個數列是等差(等比)數列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列; 2、最后一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證; 3、證明不等式時,有時構造函數,利用函數單調性很簡單 立體幾何題。 1、證明線面位置關系,一般不需要去建系,更簡單; 2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系; 3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關系。 概率問題。 1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數; 2、搞清是什么概率模型,套用哪個公式; 3、記準均值、方差、標準差公式; 4、求概率時,正難則反(根據p1+p2+……+pn=1); 5、注意計數時利用列舉、樹圖等基本方法; 6、注意放回抽樣,不放回抽樣; 正弦、余弦典型例題。 1、在△ABC中,∠C=90°,a=1,c=4,則sinA的`值為 2、已知α為銳角,且,則α的度數是()A、30°B、45°C、60°D、90° 3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數是()A、75°B、90°C、105°D、120° 4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60° 5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。 正弦、余弦解題訣竅。 1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。 2、已知三邊,或兩邊及其夾角用余弦定理 3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。 1、課程內容: 必修課程由5個模塊組成: 必修1:集合、函數概念與基本初等函數(指、對、冪函數) 必修2:立體幾何初步、平面解析幾何初步。 必修3:算法初步、統計、概率。 必修4:基本初等函數(三角函數)、平面向量、三角恒等變換。 必修5:解三角形、數列、不等式。 以上是每一個高中學生所必須學習的。 上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。 此外,基礎內容還增加了向量、算法、概率、統計等內容。 2、重難點及考點: 重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數 難點:函數、圓錐曲線 高考相關考點: ⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件 ⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用 ⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的.應用 ⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用 ⑸平面向量:有關概念與初等運算、坐標運算、數量積及其應用 ⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用 ⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系 ⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用 ⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量 ⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用 ⑾概率與統計:概率、分布列、期望、方差、抽樣、正態分布 ⑿導數:導數的概念、求導、導數的應用 ⒀復數:復數的概念與運算 1.數列的定義 按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項. (1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列. (2)在數列的定義中并沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,…. (4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當于f(n),而項數是指這個數在數列中的位置序號,它是自變量的值,相當于f(n)中的n. (5)次序對于數列來講是十分重要的,有幾個相同的數,由于它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合. 2.數列的分類 (1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對于有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列. (2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列. 3.數列的通項公式 數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的`規律,這個規律通常是用式子f(n)來表示的, 這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…, 由公式寫出的后續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循. 再強調對于數列通項公式的理解注意以下幾點: (1)數列的通項公式實際上是一個以正整數集N.或它的有限子集{1,2,…,n}為定義域的函數的表達式. (2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項. (3)如所有的函數關系不一定都有解析式一樣,并不是所有的數列都有通項公式. 如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式. (4)有的數列的通項公式,形式上不一定是的,正如舉例中的: (5)有些數列,只給出它的前幾項,并沒有給出它的構成規律,那么僅由前面幾項歸納出的數列通項公式并不. 高三數學知識點之導數公式 1.y=c(c為常數) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=arcsinx y'=1/√1-x^2 10.y=arccosx y'=-1/√1-x^2 11.y=arctanx y'=1/1+x^2 12.y=arccotx y'=-1/1+x^2 三角函數公式 銳角三角函數公式 sin α=∠α的對邊 / 斜邊 cos α=∠α的鄰邊 / 斜邊 tan α=∠α的對邊 / ∠α的鄰邊 cot α=∠α的`鄰邊 / ∠α的對邊 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推導 sin3a =sin(2a+a) =sin2acosa+cos2asina 輔助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降冪公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推導公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa sin3a=3sina-4sin3a =4sina(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述兩式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 數學圓錐公式知識點 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑 余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角 圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標 圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0 拋物線標準方程y2=2pxy2=-2px-x2=2pyx2=-2py 直棱柱側面積S=c.h斜棱柱側面積S=c'.h 正棱錐側面積S=1/2c.h'正棱臺側面積S=1/2(c+c')h' 圓臺側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi.r2 圓柱側面積S=c.h=2pi.h圓錐側面積S=1/2.c.l=pi.r.l 弧長公式l=a.ra是圓心角的弧度數r>0扇形面積公式s=1/2.l.r 錐體體積公式V=1/3.S.H圓錐體體積公式V=1/3.pi.r2h 斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側棱長 柱體體積公式V=s.h圓柱體V=p.r2h 乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b 三角函數的單調性判斷致誤 對于函數y=Asin(ωx+φ)的單調性,當ω>0時,由于內層函數u=ωx+φ是單調遞增的,所以該函數的單調性和y=sin x的單調性相同,故可完全按照函數y=sin x的單調區間解決;但當ω<0時,內層函數u=ωx+φ是單調遞減的,此時該函數的單調性和函數y=sinx的單調性相反,就不能再按照函數y=sinx的單調性解決,一般是根據三角函數的奇偶性將內層函數的系數變為正數后再加以解決。對于帶有絕對值的三角函數應該根據圖像,從直觀上進行判斷。 忽視零向量致誤 零向量是向量中最特殊的向量,規定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。 向量夾角范圍不清致誤 解題時要全面考慮問題。數學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。 an與Sn關系不清致誤 在數列問題中,數列的通項an與其前n項和Sn之間存在下列關系:an=S1,n=1,Sn-Sn-1,n≥2。這個關系對任意數列都是成立的,但要注意的是這個關系式是分段的,在n=1和n≥2時這個關系式具有完全不同的表現形式,這也是解題中經常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點。 對數列的定義、性質理解錯誤 等差數列的前n項和在公差不為零時是關于n的常數項為零的二次函數;一般地,有結論“若數列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m-Sm,S3m-S2m(m∈Nx)是等差數列。 數列中的最值錯誤 數列問題中其通項公式、前n項和公式都是關于正整數n的函數,要善于從函數的觀點認識和理解數列問題。數列的通項an與前n項和Sn的關系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統一。在關于正整數n的二次函數中其取最值的點要根據正整數距離二次函數的對稱軸的遠近而定。 錯位相減求和項處理不當致誤 錯位相減求和法的適用條件:數列是由一個等差數列和一個等比數列對應項的乘積所組成的,求其前n項和。基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數列的前n項和或前n-1項和為主的求和問題.這里最容易出現問題的就是錯位相減后對剩余項的處理。 不等式性質應用不當致誤 在使用不等式的基本性質進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質成立的前提條件就會出現錯誤。 忽視基本不等式應用條件致誤 利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數的最值時,務必注意a,b為正數(或a,b非負),ab或a+b其中之一應是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數,在應用基本不等式求函數最值時,一定要注意ax,bx的'符號,必要時要進行分類討論,另外要注意自變量x的取值范圍,在此范圍內等號能否取到。 符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡。 軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。 【軌跡方程】就是與幾何軌跡對應的代數描述。 一、求動點的軌跡方程的基本步驟 1、建立適當的坐標系,設出動點M的坐標; 2、寫出點M的集合; 3、列出方程=0; 4、化簡方程為最簡形式; 5、檢驗。 二、求動點的軌跡方程的常用方法:求軌跡方程的'方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。 1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。 2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。 3、相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。 4、參數法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。 5、交軌法:將兩動曲線方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。 直譯法:求動點軌跡方程的一般步驟 ①建系——建立適當的坐標系; ②設點——設軌跡上的任一點P(x,y); ③列式——列出動點p所滿足的關系式; ④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡; ⑤證明——證明所求方程即為符合條件的動點軌跡方程。 第一:高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節。 主要是考函數和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的.問題,這是第一個板塊。 第二:平面向量和三角函數。 重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質,第三,正弦定理和余弦定理來解三角形。難度比較小。 第三:數列。 數列這個板塊,重點考兩個方面:一個通項;一個是求和。 第四:空間向量和立體幾何。 在里面重點考察兩個方面:一個是證明;一個是計算。 第五:概率和統計。 這一板塊主要是屬于數學應用問題的范疇,當然應該掌握下面幾個方面,第一……等可能的概率,第二……事件,第三是獨立事件,還有獨立重復事件發生的概率。 第六:解析幾何。 這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當然這一類題,我總結下面五類常考的'題型,包括第一類所講的直線和曲線的位置關系,這是考試最多的內容。考生應該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。 第七:押軸題。 考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。 第一部分代數 (一)集合和簡易邏輯 1、解集合的意義及其表示方法,了解空集、全集、子集、交集、并集、補集的概念及其表示方法,了解符號各種跟集合相關的符號含義,并能運用這些符號表示集合與集合、元素與集合的關系。 2、了解充分條件、必要條件、充分必要條件的概念。 (二)函數 1、了解函數概念,會求一些常見函數的定義域。 2、了解函數的單調性和奇偶性的概念,會判斷一些常見函數的單調性和奇偶性。 3、理解一次函數、反比例函數的概念,掌握它們的圖像和性質,會求它們的解析式。 4、理解二次函數的概念,掌握它的圖象和性質以及函數y=ax?+bx+c(a≠0)與y=ax?(a≠0)的圖象間的關系;會求二次函數的解析式及最大值或最小值,能運用二次函數的知識解決有關問題。 5、理解分數指數冪的概念,掌握有理指數冪的運算性質,掌握指數函數的概念、圖象和性質。 6、理解對數的概念,掌握對數的運算性質,掌握對數函數的概念、圖象和性質。 (三)不等式和不等式組 1、了解不等式的性質,會解一元一次不等式、一元一次不等式組各可化為一元一次不等式組的不等式,會解一元二次不等式。會表示不等式或不等式組的解集。 2、會解形如1ax+b1≥c和1ax+b1≤c的絕對值不等式。 (四)數列 1、了解數列及其通項、前n項和的概念。 2、理解等差數列、等差中項的概念,會靈活運用等差數列的通項公式、前n項和公式解決有關問題。 3、理解等比數列、等比中項的概念,會運用等比數列的.通項公式、前n項和公式解決有關問題。 (五)導數 1、理解導數的概念及其幾何意義。 2、掌握函數y=c(c為常數),y=c(n∈N+)的導數公式,會求多項式函數的導數。 3、了解極大值、極小值、最大值、最小值的概念,并會用導數求多項式函數的單調區間、極大值、極小值及閉區間上的最大值和最小值。 4、會求有關曲線的切線議程,會用導數求簡單實際問題的最大值與最小值。 第二部分三角函數 (一)三角函數及其有關概念 1、了解任意角的概念,理解象限角和終邊相同的角的概念。 2、了解弧度的概念,會進行弧度與角度的換算。 3、理解任意三角函數的概念,了解三角函數在各象限的符號和特殊角的三角函數值。 (二)三角函數式的變換 1、掌握同角三角函數間的基本關系式、誘導公式,會運用它們進行計算、化簡和證明。 2、掌握兩角和、兩角差、二倍角的正弦、余弦、正切的公式,會用它們進行計算、化簡和證明。 (三)三角函數的圖象和性質 1、掌握正弦函數、余弦函數的圖象和性質,會用這兩個函數的性質(定義域、值域、周期性、奇偶性和單調性)解決有關問題。 2、了解正切函數的圖象和性質。 3、會求函數y=Asin(ωx+Ф)的周期、最大值和最小值。 4、會由已知三角函數值求角,并會作符號arcsinx、arccosx,、arctanx表示。 (四)解三角形 1、掌握直角三角形的邊角關系,會用它們解直角三角形。 2、掌握正弦定理和余弦定理,會用它們解斜三角形。 第三部分平面解析幾何 (一)平面向量 1、理解向量的概念,掌握向量的幾何表示,了解共線向量的概念。 2、掌握向量的加、減運算,掌握數乘向量的運算,了解兩個向量共線的條件。 3、了解向量的分解定理。 4、掌握向量數量積運算,了解其幾何意義和在處理長度、角度及垂直問題的應用4了解向量垂直的條件。 5、了解向量的直角坐標的概念,掌握向量的坐標運算。 6、掌握平面內兩點間的距離公式、線段的中點公式和平移公式。 (二)直線 1、理解直線的傾斜角和斜率的概念,會求直線的斜率。 2、會求直線方程,會用直線方程解決有關問題。 3了解兩條直線平行與垂直的條件以及點到直線的距離公式,會用它們解決有關問題。 (三)圓錐曲線 1、了解曲線和方程的關系,會求兩條曲線的交點。 2、掌握圓的標準方程和一般方程式以及直線與圓的位置關系,能靈活運用它們解決有關問題。 3、理解橢圓、雙曲線、拋物線的概念,掌握它們的標準方程和性質,會用它們解決有關問題。 第四部分概率與統計初步 (一)排列、組合 1、了解分類計數原理和分步計數原理。 2、了解排列、組合的意義,會用排列數、組合數的計算公式。 3、會解排列、組合的簡單應用題。 (二)概率初步 1、了解隨機事件及其概率的意義。 2、了解等可能性事件的概率的意義,會用計數方法和排列組合基本公式計算一些等可能性事件的概率。 3、了解互斥事件的意義,會用互斥事件的概率加法公式計算一些事件的概率。 4、了解相互獨立事件的意義,會用相互獨立事件的概率乘法公式計算一些事件的概率。 5、會計算事件在n次獨立重復試驗中恰好發生k次的概率。 1集合思想及應用 集合是高中數學的基本知識,為歷年必考內容之一,主要考查對集合基本概念的認識和理解。 例:已知集合A={(x,y)|x2+mx—y+2=0},B={(x,y)|x—y+1=0,且0≤x≤2},如果A∩B≠,求實數m的取值范圍。 2充要條件的判定 充分條件、必要條件和充要條件是重要的數學概念,主要用來區分命題的條件p和結論q之間的關系。 例:已知關于x的實系數二次方程x2+ax+b=0有兩個實數根α、β,證明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要條件 3運用向量法解題 本節內容主要是幫助考生運用向量法來分析,解決一些相關問題。 例:三角形ABC中,A(5,—1)、B(—1,7)、C(1,2),求:(1)BC邊上的中線 AM的長;(2)∠CAB的平分線AD的長;(3)cosABC的值。 4三個“二次”及關系 三個“二次”即一元二次函數、一元二次方程、一元二次不等式是中學數學的重要內容,具有豐富的內涵和密切的聯系,同時也是研究包含二次曲線在內的許多內容的工具。高考試題中近一半的試題與這三個“二次”問題有關。 例:已知對于x的所有實數值,二次函數f(x)=x2—4ax+2a+12(a∈R)的值都是非負的,求關于x的方程=|a—1|+2的根的取值范圍。 5求解函數解析式 求解函數解析式是高考重點考查內容之一,需引起重視。 例:已知f(2—cosx)=cos2x+cosx,求f(x—1)。 例:(1)已知函數f(x)滿足f(logax)=(其中a>0,a≠1,x>0),求f(x)的表達式。 (2)已知二次函數f(x)=ax2+bx+c滿足|f(1)|=|f(—1)|=|f(0)|=1,求f(x)的表達式。 6函數值域及求法 函數的值域及其求法是近幾年高考考查的重點內容之一。 例:設m是實數,記M={m|m>1},f(x)=log3(x2—4mx+4m2+m+)。 (1)證明:當m∈M時,f(x)對所有實數都有意義;反之,若f(x)對所有實數x都有意義,則m∈M。 (2)當m∈M時,求函數f(x)的最小值。 (3)求證:對每個m∈M,函數f(x)的最小值都不小于1。 7奇偶性與單調性(一) 函數的單調性、奇偶性是高考的重點內容之一,掌握判定方法,正確認識單調函數與奇偶函數的圖象。 例:設a>0,f(x)=是R上的偶函數,(1)求a的值;(2)證明:f(x)在(0,+∞)上是增函數。 8奇偶性與單調性(二) 函數的單調性、奇偶性是高考的重點和熱點內容之一,特別是兩性質的應用更加突出。本節主要幫助考生學會怎樣利用兩性質解題,掌握基本方法,形成應用意識。 例:已知偶函數f(x)在(0,+∞)上為增函數,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。 例:已知奇函數f(x)是定義在(—3,3)上的減函數,且滿足不等式f(x—3)+f(x2—3)<0,設不等式解集為A,B=A∪{x|1≤x≤ },求函數g(x)=—3x2+3x—4(x∈B)的最大值。 9指數函數、對數函數問題 指數函數、對數函數是高考考查的重點內容之一。 例:設f(x)=log2,F(x)= +f(x)。 (1)試判斷函數f(x)的單調性,并用函數單調性定義,給出證明; (2)若f(x)的反函數為f—1(x),證明:對任意的自然數n(n≥3),都有f—1(n)>; (3)若F(x)的反函數F—1(x),證明:方程F—1(x)=0有惟一解。 10函數圖象與圖象變換 函數的圖象與性質是高考考查的重點內容之一,掌握函數圖象變化的一般規律,能利用函數的圖象研究函數的性質。 例:已知函數f(x)=ax3+bx2+cx+d的圖象如圖,求b的范圍。 11函數中的綜合問題 函數綜合問題是歷年高考的熱點和重點內容之一,一般難度較大。 例:設函數f(x)的定義域為R,對任意實數x、y都有f(x+y)=f(x)+f(y),當x>0時f(x)<0且f(3)=—4。 (1)求證:f(x)為奇函數; (2)在區間[—9,9]上,求f(x)的最值。 12三角函數的圖象和性質 三角函數的圖象和性質是高考的熱點,在復習時要充分運用數形結合的思想,把圖象和性質結合起來。本節主要幫助考生掌握圖象和性質并會靈活運用。 例:已知α、β為銳角,且x(α+β—)>0,試證不等式f(x)= x<2對一切非零實數都成立。 例:設z1=m+(2—m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范圍。 163三角函數式的化簡與求值 三角函數式的化簡和求值是高考考查的重點內容之一。通過本節的學習使考生掌握化簡和求值問題的解題規律和途徑,特別是要掌握化簡和求值的一些常規技巧,以優化我們的解題效果,做到事半功倍。 例:已知<β<α<,cos(α—β)=,sin(α+β)=—,求sin2α的值_________。 14三角形中的三角函數式 三角形中的三角函數關系是歷年高考的重點內容之一。 ●已知△ABC的'三個內角A、B、C滿足A+C=2B。,求cos的值。 15不等式的證明策略 不等式的證明,方法靈活多樣,它可以和很多內容結合。高考解答題中,常滲透不等式證明的內容,純不等式的證明,歷來是高中數學中的一個難點,本難點著重培養考生數學式的變形能力,邏輯思維能力以及分析問題和解決問題的能力。 16解不等式 不等式在生產實踐和相關學科的學習中應用廣泛,又是學習高等數學的重要工具,所以不等式是高考數學命題的重點,解不等式的應用非常廣泛,如求函數的定義域、值域,求參數的取值范圍等,高考試題中對于解不等式要求較高,往往與函數概念,特別是二次函數、指數函數、對數函數等有關概念和性質密切聯系,應重視;從歷年高考題目看,關于解不等式的內容年年都有,有的是直接考查解不等式,有的則是間接考查解不等式。 17不等式的綜合應用 不等式是繼函數與方程之后的又一重點內容之一,作為解決問題的工具,與其他知識綜合運用的特點比較突出。不等式的應用大致可分為兩類:一類是建立不等式求參數的取值范圍或解決一些實際應用問題;另一類是建立函數關系,利用均值不等式求最值問題、本難點提供相關的思想方法,使考生能夠運用不等式的性質、定理和方法解決函數、方程、實際應用等方面的問題。 例:設二次函數f(x)=ax2+bx+c(a>0),方程f(x)—x=0的兩個根x1、x2滿足0 (1)當x∈[0,x1時,證明x (2)設函數f(x)的圖象關于直線x=x0對稱,證明:x0< 。 高中數學復習的五大要點分析 一、端正態度,切忌浮躁,忌急于求成 在第一輪復習的過程中,心浮氣躁是一個非常普遍的現象。主要表現為平時復習覺得沒有問題,題目也能做,但是到了考試時就是拿不了高分!這主要是因為: (1)對復習的知識點缺乏系統的理解,解題時缺乏思維層次結構。第一輪復習著重對基礎知識點的挖掘,數學老師一定都會反復強調基礎的重要性。如果不重視對知識點的系統化分析,不能構成一個整體的知識網絡構架,自然在解題時就不能擁有整體的構思,也不能深入理解高考典型例題的思維方法。 (2)復習的時候心不靜。心不靜就會導致思維不清晰,而思維不清晰就會促使復習沒有效率。建議大家在開始一個學科的復習之前,先靜下心來認真想一想接下來需要復習哪一塊兒,需要做多少事情,然后認真去做,同時需要很高的注意力,只有這樣才會有很好的效果。 (3)在第一輪復習階段,學習的重心應該轉移到基礎復習上來。 因此,建議廣大同學在一輪復習的時候千萬不要急于求成,一定要靜下心來,認真的揣摩每個知識點,弄清每一個原理。只有這樣,一輪復習才能顯出成效。 二、注重教材、注重基礎,忌盲目做題 要把書本中的常規題型做好,所謂做好就是要用最少的時間把題目做對。部分同學在第一輪復習時對基礎題不予以足夠的重視,認為題目看上去會做就可以不加訓練,結果常在一些“不該錯的地方錯了”,最終把原因簡單的歸結為粗心,從而忽視了對基本概念的掌握,對基本結論和公式的記憶及基本計算的訓練和常規方法的積累,造成了實際成績與心理感覺的偏差。 可見,數學的基本概念、定義、公式,數學知識點的聯系,基本的數學解題思路與方法,是第一輪復習的重中之重。不妨以既是重點也是難點的函數部分為例,就必須掌握函數的概念,建立函數關系式,掌握定義域、值域與最值、奇偶性、單調性、周期性、對稱性等性質,學會利用圖像即數形結合。 三、抓薄弱環節,做好復習的針對性,忌無計劃 每個同學在數學學習上遇到的問題有共同點,更有不同點。在復習課上,老師只能針對性去解決共同點,而同學們自己的個別問題則需要通過自己的思考,與同學們的討論,并向老師提問來解決問題,我們提倡同學多問老師,要敢于問。每個同學必須了解自己掌握了什么,還有哪些問題沒有解決,要明確只有把漏洞一一補上才能提高。復習的過程,實質就是解決問題的過程,問題解決了,復習的效果就實現了。同時,也請同學們注意:在你問問題之前先經過自己思考,不要把不經過思考的問題就直接去問,因為這并不能起到更大作用。 高三的復習一定是有計劃、有目標的`,所以千萬不要盲目做題。第一輪復習非常具有針對性,對于所有知識點的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡單做題是達不到一輪復習應該具有的效果。而且盲目做題沒有針對性,更不會有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對知識點運用方法的總結。 四、在平時做題中要養成良好的解題習慣,忌不思 1.樹立信心,養成良好的運算習慣。部分同學平時學習過程中自信心不足,做作業時免不了互相對答案,也不認真找出錯誤原因并加以改正。“會而不對”是高三數學學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這就是一種非常不好的習慣,必須在第一輪復習中逐步克服,否則,后患無窮。可結合平時解題中存在的具體問題,逐題找出原因,看其是行為習慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位同學必備的,以便以后查詢。 2.做好解題后的開拓引申,培養一題多解和舉一反三的能力。解題能力的培養可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對解題方法的開拓引申,即一道數學題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。 考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對題目做開拓引申,引申出新題和新解法,有利于培養同學們的發散思維,激發創造精神,提高解題能力: (1)把題目條件開拓引申。 ①把特殊條件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。 (2)把題目結論開拓引申。 (3)把題型開拓引申,同一個題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。 3.提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡捷;二是對常規解法的掌握是否達到高度的熟練程度。 五、學會總結、歸納,訓練到位,忌題量不足 我在暑期上課的時候發現,很多同學都是一看到題目就開始做題,這也是一輪復習應該避免的地方。做題如果不注重思路的分析,知識點的運用,效果可想而知。因此建議同學們在做題前要把老師上課時復習的知識再回顧一下,梳理知識體系,回顧各個知識點,對所學的知識結構要有一個完整清楚的認識,認真分析題目考查的知識,思想,以及方法,還要學會總結歸納不留下任何知識的盲點,在一輪復習中要注意對各個知識點的細化。這個過程不需要很長的時間,而且到了后續階段會越來越熟練。因此,養成良好的做題習慣,有助于訓練自己的解題思維,提高自己的解題能力。 實踐出真知,充足的題量是把理論轉化為能力的一種保障,在足夠的題目的練習下不僅可以更扎實的掌握知識點,還可以更深入的了解知識點,避免出現“會而不對、對而不全”的現象。由于高考依然是以做題為主,所以解題能力是高考分數的一個直接反映,尤其是數學試題。而解題能力不是三兩道題就能提升的,而是要大量的反復的訓練、認真細致的推敲才會有較大的提升。有句話說的好,“量變導致質變”,因此,同學們在每章復習的時候,一定要做足夠的題,才能夠充分的理解這一章的內容,才能夠做到對這一章知識點的熟練運用。 但是,大量訓練絕對不是題海戰術。因為針對每章節做題都有目標,同時做題訓練都需要不斷的總結,既要橫向總結,也要縱向深入。只要在每章節做題做到一定程度的時候都能感覺到這一章的知識點有哪些,典型題型有哪些,方法和技巧有哪些,換句話說,如果隨機抽取一些近幾年關于這一章的高考題都會做,那我認為就可以了。 高中數學知識點歸納 1.必修課程由5個模塊組成: 必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數) 必修2:立體幾何初步、平面解析幾何初步。 必修3:算法初步、統計、概率。 必修4:基本初等函數(三角函數)、平面向量、三角恒等變換。 必修5:解三角形、數列、不等式。 以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。 選修課程分為4個系列: 系列1:2個模塊 選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。 選修1-2:統計案例、推理與證明、數系的擴充與復數、框圖 系列2:3個模塊 選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何 選修2-2:導數及其應用、推理與證明、數系的擴充與復數 選修2-3:計數原理、隨機變量及其分布列、統計案例 選修4-1:幾何證明選講 選修4-4:坐標系與參數方程 選修4-5:不等式選講 2.重難點及其考點: 重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數 難點:函數,圓錐曲線 高考相關考點: 1.集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡易邏輯、充要條件 2.函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數函數、對數函數、函數的應用 3.數列:數列的有關概念、等差數列、等比數列、數列求通項、求和 4.三角函數:有關概念、同角關系與誘導公式、和差倍半公式、求值、化簡、證明、三角函數的圖像及其性質、應用 5.平面向量:初等運算、坐標運算、數量積及其應用 6.不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經常出現在大題的選做題里)、不等式的應用 7.直線與圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系 8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用 9.直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量 10.排列、組合和概率:排列、組合應用題、二項式定理及其應用 11.概率與統計:概率、分布列、期望、方差、抽樣、正態分布 12.導數:導數的概念、求導、導數的應用 13.復數:復數的概念與運算 高三數學重要知識點總結 考點一:集合與簡易邏輯 集合部分一般以選擇題出現,屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯結詞、“充要關系”、命題真偽的判斷、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。 考點二:函數與導數 函數是高考的重點內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函數的單調區間、極值與最值等,通常以客觀題的形式出現,屬于容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯系在一起以解答題的形式出現,如一些不等式恒成立問題、參數的取值范圍問題、方程根的個數問題、不等式的證明等問題。 考點三:三角函數與平面向量 一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點考查平面向量數量積的概念及應用,向量與直線、圓錐曲線、數列、不等式、三角函數等結合,解決角度、垂直、共線等問題是“新熱點”題型. 考點四:數列與不等式 不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進行考查.在選擇、填空題中考查等差或等比數列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問題的能力,它們都屬于中、高檔題目. 考點五:立體幾何與空間向量 一是考查空間幾何體的結構特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。 考點六:解析幾何 一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。 考點七:算法復數推理與證明 高考對算法的考查以選擇題或填空題的形式出現,或給解答題披層“外衣”.考查的熱點是流程圖的識別與算法語言的閱讀理解.算法與數列知識的網絡交匯命題是考查的主流.復數考查的重點是復數的有關概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數學歸納法可能作為解答題的一小問. 高三數學知識點歸納 一、函數的定義域的常用求法: 1、分式的分母不等于零; 2、偶次方根的被開方數大于等于零; 3、對數的真數大于零; 4、指數函數和對數函數的底數大于零且不等于1; 5、三角函數正切函數y=tanx中x≠kπ+π/2; 6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。 二、函數的解析式的常用求法: 1、定義法; 2、換元法; 3、待定系數法; 4、函數方程法; 5、參數法; 6、配方法 三、函數的值域的常用求法: 1、換元法; 2、配方法; 3、判別式法; 4、幾何法; 5、不等式法; 6、單調性法; 7、直接法 四、函數的最值的常用求法: 1、配方法; 2、換元法; 3、不等式法; 4、幾何法; 5、單調性法 五、函數單調性的常用結論: 1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數。 2、若f(x)為增(減)函數,則-f(x)為減(增)函數。 3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。 4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。 5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。 六、函數奇偶性的常用結論: 1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。 2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。 3、一個奇函數與一個偶函數的積(商)為奇函數。 4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。 5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。 高中數學知識點總結 1、圓的標準方程: 圓心為A(a,b),半徑為r的圓的方程 2、點與圓的關系的判斷方法:(1),點在圓外(2),點在圓上(3),點在圓內 4.1.2圓的一般方程 1、圓的一般方程: 2、圓的一般方程的特點: (1)①x2和y2的系數相同,不等于0. ②沒有xy這樣的二次項. (2)圓的一般方程中有三個特定的系數D、E、F,因之只要求出這三個系數,圓的方程就確定了. (3)、與圓的標準方程相比較,它是一種特殊的二元二次方程,代數特征明顯,圓的標準方程則指出了圓心坐標與半徑大小,幾何特征較明顯。 4.2.1圓與圓的位置關系 1、用點到直線的距離來判斷直線與圓的位置關系. 4.2.2圓與圓的位置關系 4.2.3直線與圓的方程的應用 1、利用平面直角坐標系解決直線與圓的位置關系; 2、過程與方法 用坐標法解決幾何問題的步驟: 第一步:建立適當的平面直角坐標系,用坐標和方程表示問題中的幾何元素,將平面幾何問題轉化為代數問題; 第二步:通過代數運算,解決代數問題; 第三步:將代數運算結果“翻譯”成幾何結論. 4.3.1空間直角坐標系 1、點M對應著確定的有序實數組,對應著空間直角坐標系中的一點3、空間中任意點M的坐標都可以用有序實數組來表示,該數組叫做點M在此空間直角坐標系中的坐標,記M。 高考的數學知識點 立體幾何初步 1、柱、錐、臺、球的結構特征 (1)棱柱: 定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。 表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。 幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。 (2)棱錐 定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等 表示:用各頂點字母,如五棱錐 幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。 (3)棱臺: 定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。 分類:以底面多邊形的邊數作為分類的.標準分為三棱臺、四棱臺、五棱臺等。 表示:用各頂點字母,如五棱臺 幾何特征: ①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交于原棱錐的頂點 (4)圓柱: 定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。 幾何特征: ①底面是全等的圓; ②母線與軸平行; ③軸與底面圓的半徑垂直; ④側面展開圖是一個矩形。 (5)圓錐: 定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。 幾何特征: ①底面是一個圓; ②母線交于圓錐的頂點; ③側面展開圖是一個扇形。 (6)圓臺: 定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分 幾何特征: ①上下底面是兩個圓; ②側面母線交于原圓錐的頂點; ③側面展開圖是一個弓形。 (7)球體: 定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體 幾何特征: ①球的截面是圓; ②球面上任意一點到球心的距離等于半徑。 2、 空間幾何體的三視圖 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下) 注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度; 俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度; 側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。 3、空間幾何體直觀圖——斜二測畫法 斜二測畫法特點: ①原來與x軸平行的線段仍然與x平行且長度不變; ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。 【高考數學知識點總結】相關文章: 數學高考知識點總結11-29 數學高考知識點總結12-06 高考數學知識點總結12-09 高考數學知識點總結07-02 數學高考知識點11-05 數學高考知識點總結15篇11-29 數學高考知識點總結(15篇)11-29 數學高考知識點總結精選15篇11-30 高考數學易混淆知識點總結12-09 高考數學概率統計知識點總結12-09高考數學知識點總結2
高考數學知識點總結3
高考數學知識點總結4
高考數學知識點總結5
高考數學知識點總結6
高考數學知識點總結7
高考數學知識點總結8
高考數學知識點總結11
高考數學知識點總結12
高考數學知識點總結13
高考數學知識點總結14
高考數學知識點總結15