黄色片女人_av毛片国产_亚洲精品成_91视频a - 黄色三级网站

高考數學知識點總結

時間:2024-07-02 15:17:49 高考數學 我要投稿

高考數學知識點總結

  總結是對某一階段的工作、學習或思想中的經驗或情況進行分析研究的書面材料,它可以給我們下一階段的學習和工作生活做指導,不如立即行動起來寫一份總結吧。那么總結有什么格式呢?以下是小編幫大家整理的高考數學知識點總結,歡迎閱讀與收藏。

高考數學知識點總結

高考數學知識點總結1

  一、高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節

  主要是考函數和導數,因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析。

  二、平面向量和三角函數

  對于這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質;第三,正弦定理和余弦定理來解三角形,這方面難度并不大。

  三、數列

  數列這個板塊,重點考兩個方面:一個通項;一個是求和。

  四、空間向量和立體幾何

  在里面重點考察兩個方面:一個是證明;一個是計算。

  五、概率和統計

  概率和統計主要屬于數學應用問題的'范疇,需要掌握幾個方面:……等可能的概率;……事件;獨立事件和獨立重復事件發生的概率。

  六、解析幾何

  這部分內容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。

  七、壓軸題

  同學們在最后的備考復習中,還應該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。

高考數學知識點總結2

  易錯點1 遺忘空集致誤

  錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B高三經典糾錯筆記:數學A,就有B=A,φ≠B高三經典糾錯筆記:數學A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導致解題結果錯誤。尤其是在解含有參數的集合問題時,更要充分注意當參數在某個范圍內取值時所給的集合可能是空集這種情況。空集是一個特殊的集合,由于思維定式的原因,考生往往會在解題中遺忘了這個集合,導致解題錯誤或是解題不全面。 易錯點2 忽視集合元素的三性致誤

  錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含著對字母參數的一些要求。在解題時也可以先確定字母參數的范圍后,再具體解決問題。

  易錯點3 四種命題的結構不明致誤

  錯因分析:如果原命題是“若 A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結構以及它們之間的等價關系。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的

  否定是全稱命題。如對“a,b都是偶數”的否定應該是“a,b不都是偶數”,而不應該是“a ,b都是奇數”。

  易錯點4 充分必要條件顛倒致誤

  錯因分析:對于兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的.必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充要條件的概念作出準確的判斷。

  邏輯聯結詞理解不準致誤

  錯因分析:在判斷含邏輯聯結詞的命題時很容易因為理解不準確而出現錯誤,在這里我們給出一些常用的判斷方法,希望對大家有所幫助:p∨q真<=>p真或q真,命題p∨q假<=>p假且q假(概括為一真即真);命題p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);┐p真<=>p假,┐p假<=>p真(概括為一真一假)。

  求函數定義域忽視細節致誤

  錯因分析:函數的定義域是使函數有意義的自變量的取值范圍,因此要求定義域就要根據函數解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數的定義域。在求一般函數定義域時要注意下面幾點:(1)分母不為0;(2)偶次被開放式非負;(3)真數大于0;(4)0的0次冪沒有意義。函數的定義域是非空的數集,在解決函數定義域時不要忘記了這點。對于復合函數,要注意外層函數的定義域是由內層函數的值域決定的。

  帶有絕對值的函數單調性判斷錯誤

  錯因分析:帶有絕對值的函數實質上就是分段函數,對于分段函數的單調性,有兩種基本的判斷方法:一是在各個段上根據函數的解析式所表示的函數的單調性求出單調區間,最后對各個段上的單調區間進行整合;二是畫出這個分段函數的圖象,結合函數圖象、性質進行直觀的判斷。研究函數問題離不開函數圖象,函數圖象反應了函數的所有性質,在研究函數問題時要時時刻刻想到函數的圖象,學會從函數圖象上去分析問題,尋找解決問題的方案。對于函數的幾個不同的單調遞增(減)區間,千萬記住不要使用并集,只要指明這幾個區間是該函數的單調遞增(減)區間即可。

高考數學知識點總結9

  1. 函數的奇偶性

  (1)若f(x)是偶函數,那么f(x)=f(-x) ;

  (2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用于求參數);

  (3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

  (5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

  2. 復合函數的有關問題

  (1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

  (2)復合函數的單調性由“同增異減”判定;

  3.函數圖像(或方程曲線的對稱性)

  (1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

  (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;

  (6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x= 對稱;

  4.函數的周期性

  (1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>;0)恒成立,則y=f(x)是周期為2a的.周期函數;

  (2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

  (3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

  (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數;

  (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2 的周期函數;

  (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;

  5.方程k=f(x)有解 k∈D(D為f(x)的值域);

  6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  7.(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);

  (3) l og a b的符號由口訣“同正異負”記憶; (4) a log a N= N ( a>;0,a≠1,N>;0 );

  8. 判斷對應是否為映射時,抓住兩點:(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9. 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

  10.對于反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

  11.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關系;

  12. 依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題

  13. 恒成立問題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解;

高考數學知識點總結10

  一、集合有關概念

  1. 集合的含義

  2. 集合的中元素的三個特性:

  (1) 元素的確定性,

  (2) 元素的互異性,

  (3) 元素的無序性,

  3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  ? 注意:常用數集及其記法:

  非負整數集(即自然數集) 記作:N

  正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類:

  (1) 有限集 含有有限個元素的集合

  (2) 無限集 含有無限個元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關系

  1.“包含”關系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關系:A=B (5≥5,且5≤5,則5=5)

  實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個集合是它本身的子集。A?A

  ②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

  ③如果 A?B, B?C ,那么 A?C

  ④ 如果A?B 同時 B?A 那么A=B

  3. 不含任何元素的'集合叫做空集,記為

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n個元素的集合,含有2n個子集,2n-1個真子集

  三、集合的運算

  運算類型 交 集 并 集 補 集

  定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

高考數學知識點總結11

  高考數學知識點:軌跡方程的求解

  符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡.

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).

  【軌跡方程】就是與幾何軌跡對應的代數描述。

  一、求動點的軌跡方程的基本步驟

  ⒈建立適當的坐標系,設出動點M的坐標;

  ⒉寫出點M的集合;

  ⒊列出方程=0;

  ⒋化簡方程為最簡形式;

  ⒌檢驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。

  ⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  ⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  ⒊相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

  ⒋參數法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。

  ⒌交軌法:將兩動曲線方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  .直譯法:求動點軌跡方程的一般步驟

  ①建系——建立適當的坐標系;

  ②設點——設軌跡上的任一點P(x,y);

  ③列式——列出動點p所滿足的關系式;

  ④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

  ⑤證明——證明所求方程即為符合條件的動點軌跡方程。

  高考數學知識點:排列組合公式

  排列組合公式/排列組合計算公式

  排列P------和順序有關

  組合C-------不牽涉到順序的問題

  排列分順序,組合不分

  例如把5本不同的書分給3個人,有幾種分法."排列"

  把5本書分給3個人,有幾種分法"組合"

  1.排列及計算公式

  從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).

  2.組合及計算公式

  從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數.用符號

  c(n,m)表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m);

  3.其他排列與組合公式

  從n個元素中取出r個元素的循環排列數=p(n,r)/r=n!/r(n-r)!.

  n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為

  n!/(n1!.n2!.....nk!).

  k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k-1,m).

  排列(Pnm(n為下標,m為上標))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n

  組合(Cnm(n為下標,m為上標))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m

  20xx-07-0813:30

  公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數R參與選擇的元素個數!-階乘,如9!=9.8.7.6.5.4.3.2.1

  從N倒數r個,表達式應該為n.(n-1).(n-2)..(n-r+1);

  因為從n到(n-r+1)個數為n-(n-r+1)=r

  舉例:

  Q1:有從1到9共計9個號碼球,請問,可以組成多少個三位數?

  A1:123和213是兩個不同的排列數。即對排列順序有要求的,既屬于“排列P”計算范疇。

  上問題中,任何一個號碼只能用一次,顯然不會出現988,997之類的組合,我們可以這么看,百位數有9種可能,十位數則應該有9-1種可能,個位數則應該只有9-1-1種可能,最終共有9.8.7個三位數。計算公式=P(3,9)=9.8.7,(從9倒數3個的乘積)

  Q2:有從1到9共計9個號碼球,請問,如果三個一組,代表“三國聯盟”,可以組合成多少個“三國聯盟”?

  A2:213組合和312組合,代表同一個組合,只要有三個號碼球在一起即可。即不要求順序的,屬于“組合C”計算范疇。

  上問題中,將所有的包括排列數的個數去除掉屬于重復的個數即為最終組合數C(3,9)=9.8.7/3.2.1

  排列、組合的概念和公式典型例題分析

  例1設有3名學生和4個課外小組.(1)每名學生都只參加一個課外小組;(2)每名學生都只參加一個課外小組,而且每個小組至多有一名學生參加.各有多少種不同方法?

  解(1)由于每名學生都可以參加4個課外小組中的任何一個,而不限制每個課外小組的人數,因此共有種不同方法.

  (2)由于每名學生都只參加一個課外小組,而且每個小組至多有一名學生參加,因此共有種不同方法.

  點評由于要讓3名學生逐個選擇課外小組,故兩問都用乘法原理進行計算.

  例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?

  解依題意,符合要求的排法可分為第一個排、、中的某一個,共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出:

  ∴符合題意的不同排法共有9種.

  點評按照分“類”的思路,本題應用了加法原理.為把握不同排法的規律,“樹圖”是一種具有直觀形象的有效做法,也是解決計數問題的一種數學模型.

  例3判斷下列問題是排列問題還是組合問題?并計算出結果.

  (1)高三年級學生會有11人:①每兩人互通一封信,共通了多少封信?②每兩人互握了一次手,共握了多少次手?

  (2)高二年級數學課外小組共10人:①從中選一名正組長和一名副組長,共有多少種不同的選法?②從中選2名參加省數學競賽,有多少種不同的選法?

  (3)有2,3,5,7,11,13,17,19八個質數:①從中任取兩個數求它們的商可以有多少種不同的商?②從中任取兩個求它的積,可以得到多少個不同的'積?

  (4)有8盆花:①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法?

  分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關是排列;②由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關,所以是組合問題.其他類似分析.

  (1)①是排列問題,共用了封信;②是組合問題,共需握手(次).

  (2)①是排列問題,共有(種)不同的選法;②是組合問題,共有種不同的選法.

  (3)①是排列問題,共有種不同的商;②是組合問題,共有種不同的積.

  (4)①是排列問題,共有種不同的選法;②是組合問題,共有種不同的選法.

  例4證明.

  證明左式

  右式.

  ∴等式成立.

  點評這是一個排列數等式的證明問題,選用階乘之商的形式,并利用階乘的性質,可使變形過程得以簡化.

  例5化簡.

  解法一原式

  解法二原式

  點評解法一選用了組合數公式的階乘形式,并利用階乘的性質;解法二選用了組合數的兩個性質,都使變形過程得以簡化.

  例6解方程:(1);(2).

  解(1)原方程

  解得.

  (2)原方程可變為

  ∵,,

  ∴原方程可化為.

  即,解得

  高三數學三角函數公式

  銳角三角函數公式

  sin α=∠α的對邊 / 斜邊

  cos α=∠α的鄰邊 / 斜邊

  tan α=∠α的對邊 / ∠α的鄰邊

  cot α=∠α的鄰邊 / ∠α的對邊

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推導

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  輔助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降冪公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推導公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述兩式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  兩角和差

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  和差化積

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

高考數學知識點總結12

  一、集合與函數

  1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解。

  2.在應用條件時,易A忽略是空集的情況

  3.你會用補集的思想解決有關問題嗎?

  4.簡單命題與復合命題有什么區別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?

  5.你知道“否命題”與“命題的否定形式”的區別。

  6.求解與函數有關的問題易忽略定義域優先的原則。

  7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于原點對稱。

  8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域。

  9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調。例如:。

  10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值, 作差, 判正負)和導數法

  11. 求函數單調性時,易錯誤地在多個單調區間之間添加符號“∪”和“或”;單調區間不能用集合或不等式表示。

  12.求函數的值域必須先求函數的定義域。

  13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恒成立問題).這幾種基本應用你掌握了嗎?

  14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?

  (真數大于零,底數大于零且不等于1)字母底數還需討論

  15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?

  16.用換元法解題時易忽略換元前后的等價性,易忽略參數的范圍。

  17.“實系數一元二次方程有實數解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?

  二、不等式

  1.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.

  2.絕對值不等式的解法及其幾何意義是什么?

  3.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?

  4.解含參數不等式的通法是“定義域為前提,函數的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

  5. 在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示。

  6. 兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a

  三、數列

  1.解決一些等比數列的'前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

  2.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。

  3.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什么樣的無窮等比數列的所有項的和必定存在?

  4.數列單調性問題能否等同于對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)

  5.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。

  四、三角函數

  1.正角、負角、零角、象限角的概念你清楚嗎,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?

  2.三角函數的定義及單位圓內的三角函數線(正弦線、余弦線、正切線)的定義你知道嗎?

  3. 在解三角問題時,你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?

  4. 你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角。 異角化同角,異名化同名,高次化低次)

  5. 反正弦、反余弦、反正切函數的取值范圍分別是

  6.你還記得某些特殊角的三角函數值嗎?

  7.掌握正弦函數、余弦函數及正切函數的圖象和性質。你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?

  五、平面向量

  1..數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。

  2..數量積與兩個實數乘積的區別:

  在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出。

  已知實數,且,則a=c,但在向量的數量積中沒有。

  在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量。

  3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

  六、解析幾何

  1.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?

  2.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。

  3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。

  4. 定比分點的坐標公式是什么?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?

  5. 對不重合的兩條直線

  (建議在解題時,討論后利用斜率和截距)

  6. 直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。

  7.解決線性規劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達。(①設出變量,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到并求出最優解⑦應用題一定要有答。)

  8.三種圓錐曲線的定義、圖形、標準方程、幾何性質,橢圓與雙曲線中的兩個特征三角形你掌握了嗎?

  9.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?

  10.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?

  11. 通徑是拋物線的所有焦點弦中最短的弦。(想一想在雙曲線中的結論?)

  12. 在用圓錐曲線與直線聯立求解時,消元后得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制。(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).

  13.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?

  七、立體幾何

  1.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

  2.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什么?

  3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見

  4.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行”而導致證明過程跨步太大。

  5.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  6.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。

  7.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?

  8. 兩條異面直線所成的角的范圍:0°<α≤90°< p="">

  直線與平面所成的角的范圍:0o≤α≤90°

高考數學知識點總結13

  (1)先看“充分條件和必要條件”

  當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

  但為什么說q是p的必要條件呢?

  事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。

  (2)再看“充要條件”

  若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q

  (3)定義與充要條件

  數學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

  顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。

  “充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”。“僅當”表示“必要”。

  (4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。

  高考數學集合復習知識點

  1、集合的概念

  集合是數學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

  集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。

  2、元素與集合的關系元素與集合的關系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

  3、集合中元素的特性

  (1)確定性:設A是一個給定的集合,x是某一具體對象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。

  (3)無序性:集合與其中元素的排列次序無關,如集合{a,b,c}與集合{c,b,a}是同一個集合。

  4、集合的分類

  集合科根據他含有的元素個數的多少分為兩類:

  有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數是可數的`,因此兩個集合是有限集。

  無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數的,因此他們是無限集。

  特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{x?R|+1=0}。

  5、特定的集合的表示

  為了書寫方便,我們規定常見的數集用特定的字母表示,下面是幾種常見的數集表示方法,請牢記。

  (1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記做N。

  (2)非負整數集內排出0的集合,也稱正整數集,記做N。或N+。

  (3)全體整數的集合通常簡稱為整數集Z。

  (4)全體有理數的集合通常簡稱為有理數集,記做Q。

  (5)全體實數的集合通常簡稱為實數集,記做R。

  不等式的解集:

  ①能使不等式成立的未知數的值,叫做不等式的解。

  ②一個含有未知數的不等式的所有解,組成這個不等式的解集。

  ③求不等式解集的過程叫做解不等式。

  不等式的判定:

  ①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

  ②在不等式“a>b”或“a

  ③不等號的開口所對的數較大,不等號的尖頭所對的數較小;

  ④在列不等式時,一定要注意不等式關系的關鍵字,如:正數、非負數、不大于、小于等等。

高考數學知識點總結14

  一、函數

  1.函數的基本概念

  函數的概念,函數的單調性,函數的奇偶性,這些屬于函數的基本概念,已經在高一數學必修一中有了詳細的介紹,在此不再贅述。

  2.指數函數

  單調性是指數函數的重要性質,特別是函數圖象的無限伸展性,x軸是函數圖象的漸近線,當0+∞,y->0;當a>1時,x->-∞,y->0;當a>1時,a的值越大,第一象限內圖象越靠近y軸,遞增的速度越快;

  3.對數函數

  對數函數的性質是每年高考的必考內容之一,其中單調性和對數函數的定義域是熱點問題,其單調性取決于底數與“1”的大小關系.

  二、三角函數

  1.命題趨勢

  高考可能仍會將三角函數概念、同角三角函數的關系式和誘導公式作為基礎內容,融于三角求值、化簡及解三角形的考查中.由該部分知識的基礎性決定這一部分知識可以和其他知識融合考查,高考中需要關注.

  2.三角函數式的化簡要遵循“三看”原則

  (1)一看“角”,這是最重要的一環,通過看角之間的差別與聯系,把角進行合理的拆分,從而正確使用公式.

  (2)二看”函數名稱”,看函數名稱之間的差異,從而確定使用的公式,常見的有”切化弦”

  (3)三看”結構特征”,分析結構特征,可以幫助我們找到變形的方向,常見的有“遇到分式要通分”等.多做三角函數練習題會對更加熟悉的掌握三角函數有幫助,這里給大家推薦李老師教的三角函數解題法。

  三、導數

  1.導數的概念

  1)如果當Δx-->0時,Δy/Δx-->常數A,就說函數y=f(x)在點x0處可導,并把A叫做f(x)在點x0處的導數(瞬時變化率).記作f’(x0)的幾何意義是曲線y=f(x)在點(x0,f(x0))處的切線的斜率.瞬時速度就是位移函數s對時間t的導數.

  2)如果函數f(x)在開區間(a,b)內每一點都可導,其導數值在(a,b)內構成一個新的`函數,叫做f(x)在開區間(a,b)內導數,記作f’(x).

  3)如果函數f(x)在點x0處可導,那么函數y=f(x)在點x0處連續.

  2.函數的導數與導數值的區別與聯系:導數是原來函數的導函數,而導數值是導函數在某一點的函數值,導數值是常數.

  3.求導

  在高中數學導數求導過程中,要仔細分析函數解析式的結構特征,緊扣求導法則,聯系基本函數求導公式,對于不具備求導法則結構形式的要適當恒等變形,對于比較復雜的函數,如果直接套用求導法則,會使求導過程繁瑣冗長,且易出錯,此時,可將解析式進行合理變形,轉化為教易求導的結構形

高考數學知識點總結15

  三角函數。

  注意歸一公式、誘導公式的正確性。

  數列題。

  1、證明一個數列是等差(等比)數列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;

  2、最后一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;

  3、證明不等式時,有時構造函數,利用函數單調性很簡單

  立體幾何題。

  1、證明線面位置關系,一般不需要去建系,更簡單;

  2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

  3、注意向量所成的角的`余弦值(范圍)與所求角的余弦值(范圍)的關系。

  概率問題。

  1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;

  2、搞清是什么概率模型,套用哪個公式;

  3、記準均值、方差、標準差公式;

  4、求概率時,正難則反(根據p1+p2+……+pn=1);

  5、注意計數時利用列舉、樹圖等基本方法;

  6、注意放回抽樣,不放回抽樣;

  正弦、余弦典型例題。

  1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

  2、已知α為銳角,且,則α的度數是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數是()A、75°B、90°C、105°D、120°

  4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。

  正弦、余弦解題訣竅。

  1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

  2、已知三邊,或兩邊及其夾角用余弦定理

  3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

【高考數學知識點總結】相關文章:

數學高考知識點總結11-29

數學高考知識點總結12-06

高考數學知識點總結12-09

數學高考知識點11-05

數學高考知識點總結15篇11-29

數學高考知識點總結(15篇)11-29

數學高考知識點總結精選15篇11-30

高考數學易混淆知識點總結12-09

高考數學概率統計知識點總結12-09