黄色片女人_av毛片国产_亚洲精品成_91视频a - 黄色三级网站

對醫學信息大數據趨勢下醫學統計學教學論文

時間:2018-07-27 16:05:40 統計學 我要投稿

對醫學信息大數據趨勢下醫學統計學教學論文

  隨著醫學健康檔案“電子化、信息化、數字化、智能化”的管理和醫學研究資料的不斷積累,醫學信息大數據時代悄然開啟。如何有效地利用這些海量信息為健康管理和健康決策提供支持,本文分析了大數據對統計學原理和方法提出的挑戰,列出了在醫學統計學課程教學中應該思考的一些問題。

對醫學信息大數據趨勢下醫學統計學教學論文

  所謂大數據(Big Data),是指具有4V特征且用目前的管理、處理技術手段難以進行有效管理和分析的數據。4V的含義是數據量大(Volume Big),數據量級擴大至PB以及ZB級別;數據產生、輸入和處理快速化(Velocity Fast);數據結構和類型多樣化(Variable Type)及數據價值密度低(Value LowDensity)。大數據的目的是將數據轉化為知識,探索數據的產生機制和過程,進行預測和政策制定。隨著醫學健康檔案“電子化、信息化、數字化、智能化”的管理,隨著物聯網在醫學健康領域的應用,醫療、護理、康復、保健工作流程中產生的數據存儲量呈指數增長。如何有效地利用這些海量信息為健康管理、臨床治療、醫院決策及衛生政策制定提供支持,是大數據時代醫學信息化帶來的挑戰。美國國家衛生研究院(NIH)為此特設立生物醫學大數據研究中心及專項基金。在我國,科技部、國家自然科學基金委、國家社會科學基金委陸續醞釀和啟動了“大數據的處理與應用”系列重大研究項目。

  統計是一門數據科學,醫學統計學是關于醫學健康數據的收集、整理、分析和解釋的方法論學科。“大數據”處理對統計學的發展提出了新的命題,如何將“醫學信息大數據”處理技術融入相關統計學課程教學以促進現代醫學信息分析技術的發展?本文做了相關的分析,并提出應該思考的一些問題。

  一、大數據對統計學原理和方法提出的挑戰

  1.統計數據產生由“問題導向”到“數據驅動”

  目前,統計數據的產生主要是基于所要研究的問題而主動進行的“數據收集”,落腳點在于如何獲取數據。在大數據時代,海量數據隨處可得,由數據驅動而進行問題研究將非常普遍。那么,獲得數據的關鍵點不在于如何獲得,而在于如何識別與選擇。由“問題導向”產生的結構數據是經過嚴格抽樣設計獲取的,具有系統誤差小、總體代表性好的優勢,但是信息量有限,且數據獲取周期長。大數據流環境下,海量數據中有價值的數據可能并不多,即數據的價值密度低,且難以避免和判斷數據獲取的誤差和偏倚。在很多情況下,統計數據不需進行抽取,而是“數據樣本即總體”;同時,也要研究如何從源源不斷的數據中抽取足以滿足統計目的和精度的樣本,這需要研究新的序貫性和動態性的抽樣方法。

  2.數據格式和結構復雜多樣化

  目前統計數據都是結構化數據,如疾病空間分布和時間序列數據等,可使用二維表格表示,可以方便地被常規統計軟件讀取和進行分析。在大數據背景下,除少量數據具有結構化特征外,更多的是半結構和非結構化數據,如各種格式的文檔、圖片、網頁、圖像、音頻和視頻等。目前,這些半結構和非結構化的大數據僅能做到初步的實時業務應用。如在研究氣候變化與人類健康相關的命題時,需要處理龐大的氣象數據,而80%以上的氣象數據均為非結構化的大數據,如何將這些非結構化的大數據做到降維、分解和長時間序列儲存無疑是統計學面臨的新命題。

  3.大數據的整合及跨庫分析方法亟待建立

  傳統上,數據集的合并和拆分都是利用關系數據庫技術,如共同的編碼或關鍵字進行操作。在大數據環境,很多數據集不再有標識個體的關鍵字,關系數據庫鏈接方法不再適用,需要探討利用數據庫之間的重疊項目來結合不用的數據庫。此外,還可以改變分析思路,如直接利用局部數據進行推斷,然后整合這些數據集的統計結論。

  4.大數據對于統計學核心理論的沖擊

  一個新生事物的出現將必定導致傳統理論和技術的變革。大數據對傳統統計學原理和方法的沖擊是劃時代的。傳統的統計學方法和理論立足于應用抽樣技術在總體中抽取小樣本進行分析,通過樣本統計量推斷總體的參數和性質。在大數據背景下,我們更關心的不是數據量的大小,而是數據所蘊含的信息量及信息的識別和選擇。因此,大數據的預處理如數據清洗、糾偏完全跳出了傳統小樣本研究的范疇。同時,大數據充滿了各種隨機的、非隨機的誤差和偏倚,很難滿足小樣本數據精度和分布的要求。在大數據時代,需要進一步拓展統計思維,豐富現有統計學的理論和方法,賦予統計學新的生命力。

  二、在大數據時代對統計學教學的幾點思考

  《“十二五”時期統計發展和改革規劃綱要》中明確提出,“建立現代統計體系就是建立以現代信息技術為支撐的統計系統”。根據這個綱要,計算機技術、互聯網系統、多媒體等現代信息技術在統計技術中將發揮更重要的作用。在醫學信息大數據時代背景下,醫學統計學教育是否能夠與時俱進,迎接大數據帶來的機遇與挑戰?為此,筆者談幾點思考:

  1.補充和加強數學基礎和計算機應用課程

  在大數據背景的沖擊下,統計學教育首先要面臨兩大沖擊。一是大數據背景下的統計模型將會跳出原有的傳統統計模型框架,需要更廣泛的學習一些數學概念,如拓撲、幾何和隨機場,這些數學知識將會在龐大數據分析的背景下扮演重要的角色。二是算法和計算機上的實現是傳統教育面對的更大挑戰,大數據環境下的數據是海量的,同時又是結構化、半結構化、非結構化的混合數據,處理這些技術需要先進的計算機技術平臺。在大數據和信息化的時代背景下,在目前醫學生的通識教育中,是否應該加強數學基礎及計算機應用等相關課程的教育?值得思考。

  2.滲透大數據基本知識和統計思維

  統計思維的培養,是提高學生處理數據和運用數據分析實際問題能力的重要一環。在大數據時代,并非所有的醫學健康問題都通過大數據方式去處理,基于小樣本的分析仍然是最基本和最有效的實現方式。因此,傳統統計學基礎和原理仍然為醫學統計學教育的核心和重點。與此同時,結合大數據技術的特點,對統計學的基本知識進行拓展教育,有計劃地將大數據的統計分析思維滲透在教學工作中。將大數據的基礎知識,如數據來源、數據結構和格式、收集和篩選,在教學中進行適當補充。引導學生將已有的統計學基本原理和方法運用到大數據處理中。

  3.擴充實驗教學內容,夯實基本軟件操作

  統計學是一門處理數據的.方法學科,重在應用。因此,在系統統計原理教學的基礎上,更加側重實踐性和應用性的訓練。在目前的統計學教學中,學生普遍比較缺乏的不能將醫學實際問題正確的轉化為統計學問題,不能根據資料根據資料的設計類型、性質和分析目的靈活選用合適的統計分析方法。通過綜合性的實際案例,將醫學科研中的實際問題納入教學,使學生虛擬的置身于科研一線,去感受和完成科學研究中的統計學應用。大數據時代,數據、資料的產生方式發生了很大變化,因此,需要增加部分大數據方面的數據、資料收集和整理方法的訓練內容。大數據背景下,數據中除了一些結構性數據外,更多的是半結構和非結構化數據,很難用傳統的二維數據表顯示方式予以直觀化。因此,除了目前常用的統計圖、統計表外,還應該逐步補充一些比較復雜的數據透視化技術方面的教學,如探索性可視化描述工具、Tableau、TIBCO和QlinkView以及敘事可視化工具等。

  在大數據時代,在統計學的教與學中,不應要求死記有關概念、定理和計算公式,而應加強統計學基礎性原理與知識的教學,凸出統計學理論與方法的應用性,建立起大數據統計思維。學習統計學是為了應用和解決實際問題。對教師來說,教好醫學統計學的標志是教會學生運用統計思維思考問題和選擇合適的統計方法解決實際健康決策及健康管理問題。對學生來說,學好統計學的標志是建立統計思維,能夠以問題為導向,在統計思想的引導下,選擇合適或最優的統計方法,或者通過創新統計方法,有效地解決實際問題。

【對醫學信息大數據趨勢下醫學統計學教學論文】相關文章:

1.淺談醫學統計學的論文

2.醫學統計學試題剖析及教學思索論文

3.醫學統計學學習體會論文

4.醫學科技論文統計學誤用分析論文

5.醫學論文中統計學處理要求

6.當前醫學論文中的統計學問題

7.醫學統計學實驗教學課程的調查分析論文

8.探討醫學統計學的應用及教育現狀論文