- 相關推薦
高考數學復習基本初等函數知識點歸納
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且*.
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).
當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成(0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時,,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
a1
圖象特征
函數性質
向x、y軸正負方向無限延伸
函數的定義域為R
圖象關于原點和y軸不對稱
非奇非偶函數
函數圖象都在x軸上方
函數的值域為R+
函數圖象都過定點(0,1)
自左向右看,
圖象逐漸上升
自左向右看,
圖象逐漸下降
增函數
減函數
在第一象限內的圖象縱坐標都大于1
在第一象限內的圖象縱坐標都小于1
在第二象限內的圖象縱坐標都小于1
在第二象限內的圖象縱坐標都大于1
圖象上升趨勢是越來越陡
圖象上升趨勢是越來越緩
函數值開始增長較慢,到了某一值后增長速度極快;
函數值開始減小極快,到了某一值后減小速度較慢;
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數當且僅當;
(3)對于指數函數,總有;
(4)當時,若,則;
二、對數函數
(一)對數
1.對數的概念:一般地,如果,那么數叫做以為底的對數,記作:(底數,真數,對數式)
說明:1注意底數的限制,且;
2;
3注意對數的書寫格式.
兩個重要對數:
1常用對數:以10為底的對數;
2自然對數:以無理數為底的對數的對數.
對數式與指數式的互化
對數式指數式
對數底數冪底數
對數指數
真數冪
(二)對數函數
1、對數函數的概念:函數,且叫做對數函數,其中是自變量,函數的定義域是(0,+).
注意:1對數函數的定義與指數函數類似,都是形式定義,注意辨別。
如:,都不是對數函數,而只能稱其為對數型函數.
2對數函數對底數的限制:,且.
2、對數函數的性質:
a1
圖象特征
函數性質
函數圖象都在y軸右側
函數的定義域為(0,+)
圖象關于原點和y軸不對稱
非奇非偶函數
向y軸正負方向無限延伸
函數的值域為R
函數圖象都過定點(1,0)
自左向右看,
圖象逐漸上升
自左向右看,
圖象逐漸下降
增函數
減函數
第一象限的圖象縱坐標都大于0
第一象限的圖象縱坐標都大于0
第二象限的圖象縱坐標都小于0
第二象限的圖象縱坐標都小于0
(三)冪函數
1、冪函數定義:一般地,形如的函數稱為冪函數,其中為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+)都有定義,并且圖象都過點(1,1);
(2)時,冪函數的圖象通過原點,并且在區間上是增函數.特別地,當時,冪函數的圖象下凸;當時,冪函數的圖象上凸;
(3)時,冪函數的圖象在區間上是減函數.在第一象限內,當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.
【高考數學復習基本初等函數知識點歸納】相關文章:
高考數學復習函數知識點05-08
高考數學復習知識點歸納05-07
集合與函數知識點高考數學復習05-08
高考數學函數的題型復習05-10
高考物理知識點復習歸納05-08
高考數學函數專項知識點05-08
高考數學函數知識點大全05-08
關于函數的高考數學專題復習05-07
高考數學函數與導數的復習建議05-08