黄色片女人_av毛片国产_亚洲精品成_91视频a - 黄色三级网站

深度學習總結

時間:2022-12-09 05:21:08 學習總結 我要投稿
  • 相關推薦

深度學習總結范例精選

  一、Deep Learning的基本思想

深度學習總結范例精選

  假設我們有一個系統S,它有n層(S1,…Sn),它的輸入是I,輸出是O,形象地表示為: I =>S1=>S2=>…..=>Sn => O,如果輸出O等于輸入I,即輸入I經過這個系統變化之后沒有任何的信息損失(呵呵,大牛說,這是不可能的。信息論中有個“信息逐層丟失”的說法(信息處理不等式),設處理a信息得到b,再對b處理得到c,那么可以證明:a和c的互信息不會超過a和b的互信息。這表明信息處理不會增加信息,大部分處理會丟失信息。當然了,如果丟掉的是沒用的信息那多好啊),保持了不變,這意味著輸入I經過每一層Si都沒有任何的信息損失,即在任何一層Si,它都是原有信息(即輸入I)的另外一種表示。現在回到我們的主題Deep Learning,我們需要自動地學習特征,假設我們有一堆輸入I(如一堆圖像或者文本),假設我們設計了一個系統S(有n層),我們通過調整系統中參數,使得它的輸出仍然是輸入I,那么我們就可以自動地獲取得到輸入I的一系列層次特征,即S1,…, Sn。

  對于深度學習來說,其思想就是對堆疊多個層,也就是說這一層的輸出作為下一層的輸入。通過這種方式,就可以實現對輸入信息進行分級表達了。 另外,前面是假設輸出嚴格地等于輸入,這個限制太嚴格,我們可以略微地放松這個限制,例如我們只要使得輸入與輸出的差別盡可能地小即可,這個放松會導致另外一類不同的Deep Learning方法。上述就是Deep Learning的基本思想。

  二、Deep learning與Neural Network

  深度學習是機器學習研究中的一個新的領域,其動機在于建立、模擬人腦進行分析學習的神經網絡,它模仿人腦的機制來解釋數據,例如圖像,聲音和文本。深度學習是無監督學習的一種。

  深度學習的概念源于人工神經網絡的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發現數據的分布式特征表示。

  Deep learning本身算是machine learning的一個分支,簡單可以理解為neural network的發展。大約二三十年前,neural network曾經是ML領域特別火熱的一個方向,但是后來確慢慢淡出了,原因包括以下幾個方面:

  1)比較容易過擬合,參數比較難tune,而且需要不少trick;

  2)訓練速度比較慢,在層次比較少(小于等于3)的情況下效果并不比其它方法更優;

  所以中間有大約20多年的時間,神經網絡被關注很少,這段時間基本上是SVM和boosting算法的天下。但是,一個癡心的老先生Hinton,他堅持了下來,并最終(和其它人一起Bengio、Yann.lecun等)提成了一個實際可行的deep learning框架。

  Deep learning與傳統的神經網絡之間有相同的地方也有很多不同。 二者的相同在于deep learning采用了神經網絡相似的分層結構,系統由包括輸入層、隱層(多層)、輸出層組成的多層網絡,只有相鄰層節點之間有連接,同一層以及跨層節點之間相互無連接,每一層可以看作是一個logistic regression模型;這種分層結構,是比較接近人類大腦的結構的。

  而為了克服神經網絡訓練中的問題,DL采用了與神經網絡很不同的訓練機制。傳統神經網絡中,采用的是back propagation的方式進行,簡單來講就是采用迭代的算法來訓練整個網絡,隨機設定初值,計算當前網絡的輸出,然后根據當前輸出和label之間的差去改變前面各層的參數,直到收斂(整體是一個梯度下降法)。而deep learning整體上是一個layer-wise的訓練機制。這樣做的原因是因為,如果采用back propagation的機制,對于一個deep network(7層以上),殘差傳播到最前面的層已經變得太小,出現所謂的gradient diffusion(梯度擴散)。這個問題我們接下來討論。

  三、Deep learning訓練過程

  3.1、傳統神經網絡的訓練方法為什么不能用在深度神經網絡

  BP算法作為傳統訓練多層網絡的典型算法,實際上對僅含幾層網絡,該訓練方法就已經很不理想。深度結構(涉及多個非線性處理單元層)非凸目標代價函數中普遍存在的局部最小是訓練困難的主要來源。

  BP算法存在的問題:

  (1)梯度越來越稀疏:從頂層越往下,誤差校正信號越來越小;

  (2)收斂到局部最小值:尤其是從遠離最優區域開始的時候(隨機值初始化會導致這種情況的發生);

  (3)一般,我們只能用有標簽的數據來訓練:但大部分的數據是沒標簽的,而大腦可以從沒有標簽的的數據中學習;

  3.2、deep learning訓練過程

  如果對所有層同時訓練,時間復雜度會太高;如果每次訓練一層,偏差就會逐層傳遞。這會面臨跟上面監督學習中相反的問題,會嚴重欠擬合(因為深度網絡的神經元和參數太多了)。

  20xx年,hinton提出了在非監督數據上建立多層神經網絡的一個有效方法,簡單的說,分為兩步,一是每次訓練一層網絡,二是調優,使原始表示x向上生成的高級表示r和該高級表示r向下生成的x'盡可能一致。方法是:

  1)首先逐層構建單層神經元,這樣每次都是訓練一個單層網絡。

  2)當所有層訓練完后,Hinton使用wake-sleep算法進行調優。

  將除最頂層的其它層間的權重變為雙向的,這樣最頂層仍然是一個單層神經網絡,而其它層則變為了圖模型。向上的權重用于“認知”,向下的權重用于“生成”。然后使用Wake-Sleep算法調整所有的權重。讓認知和生成達成一致,也就是保證生成的最頂層表示能夠盡可能正確的復原底層的結點。比如頂層的一個結點表示人臉,那么所有人臉的圖像應該激活這個結點,并且這個結

  果向下生成的圖像應該能夠表現為一個大概的人臉圖像。Wake-Sleep算法分為醒(wake)和睡(sleep)兩個部分。

  1)wake階段:認知過程,通過外界的特征和向上的權重(認知權重)產生每一層的抽象表示(結點狀態),并且使用梯度下降修改層間的下行權重(生成權重)。也就是“如果現實跟我想象的不一樣,改變我的權重使得我想象的東西就是這樣的”。

  2)sleep階段:生成過程,通過頂層表示(醒時學得的概念)和向下權重,生成底層的狀態,同時修改層間向上的權重。也就是“如果夢中的景象不是我腦中的相應概念,改變我的認知權重使得這種景象在我看來就是這個概念”。 deep learning訓練過程具體如下:

  1)使用自下上升非監督學習(就是從底層開始,一層一層的往頂層訓練): 采用無標定數據(有標定數據也可)分層訓練各層參數,這一步可以看作是一個無監督訓練過程,是和傳統神經網絡區別最大的部分(這個過程可以看作是feature learning過程):

  具體的,先用無標定數據訓練第一層,訓練時先學習第一層的參數(這一層可以看作是得到一個使得輸出和輸入差別最小的三層神經網絡的隱層),由于模型capacity的限制以及稀疏性約束,使得得到的模型能夠學習到數據本身的結構,從而得到比輸入更具有表示能力的特征;在學習得到第n-1層后,將n-1層的輸出作為第n層的輸入,訓練第n層,由此分別得到各層的參數;

  2)自頂向下的監督學習(就是通過帶標簽的數據去訓練,誤差自頂向下傳輸,對網絡進行微調):

  基于第一步得到的各層參數進一步fine-tune整個多層模型的參數,這一步是一個有監督訓練過程;第一步類似神經網絡的隨機初始化初值過程,由于DL的第一步不是隨機初始化,而是通過學習輸入數據的結構得到的,因而這個初值更接近全局最優,從而能夠取得更好的效果;所以deep learning效果好很大程度上歸功于第一步的feature learning過程。

  四、Deep Learning的常用模型或者方法

  4.1、AutoEncoder自動編碼器

  Deep Learning最簡單的一種方法是利用人工神經網絡的特點,人工神經網絡(ANN)本身就是具有層次結構的系統,如果給定一個神經網絡,我們假設其輸出與輸入是相同的,然后訓練調整其參數,得到每一層中的權重。自然地,我們就得到了輸入I的幾種不同表示(每一層代表一種表示),這些表示就是特征。自動編碼器就是一種盡可能復現輸入信號的神經網絡。為了實現這種復現,自動編碼器就必須捕捉可以代表輸入數據的最重要的因素,就像PCA那樣,找到可以代表原信息的主要成分。

  具體過程簡單的說明如下:

  1)給定無標簽數據,用非監督學習學習特征:

  在我們之前的神經網絡中,如第一個圖,我們輸入的樣本是有標簽的,即(input, target),這樣我們根據當前輸出和target(label)之間的差去改變前面各層的參數,直到收斂。但現在我們只有無標簽數據,也就是右邊的圖。那么這個誤差怎么得到呢?

  如上圖,我們將input輸入一個encoder編碼器,就會得到一個code,這個code也就是輸入的一個表示,那么我們怎么知道這個code表示的就是input呢?我們加一個decoder解碼器,這時候decoder就會輸出一個信息,那么如果輸出的這個信息和一開始的輸入信號input是很像的(理想情況下就

【深度學習總結】相關文章:

國旗下講話-推進深度學習提升學習品質08-05

最有深度的話10-02

有深度的句子11-01

有深度的經典語句11-03

勵志有深度的句子04-09

欣賞的深度高中作文05-02

早安有深度的文案10-09

有深度的愛情名言05-12

深度涵養的唯美句子05-01